This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A C C E P T E D M A N U S C R I P TACCEPTED MANUSCRIPT Electrostatic charge signals in the fluidized bed contain much dynamic information on particle motions, which are poorly understood and explored. In this work, correlation velocities of Geldart B and D particles were measured, analyzed and compared by induced electrostatic sensors combined with cross-correlation method in the fluidized bed. The results indicated that the average correlation velocity of particle clouds increased and the normalized probability density distributions of correlation velocities broadened when the superficial gas velocity increased in the dense-phase region. Both upward and downward correlation velocities could be acquired in the dynamic bed level region. Under the same excess gas velocity, the average correlation velocity of Geldart D particles was significantly smaller than that of Geldart B particles, which was caused by the smaller bubble sizes caused by the dominant bubble split over coalescence and less volume of A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 2 gas forming bubbles for Geldart D particles. The experimental results verified the reliability and repeatability of particle correlation velocity measurement by induced electrostatic sensors in the gas-solid fluidized bed, which provides definite potential in monitoring of particle motions.