2009
DOI: 10.1007/s00407-009-0051-4
|View full text |Cite
|
Sign up to set email alerts
|

Le problème de la définition de l’aire d’une surface gauche: Peano et Lebesgue

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
1

Year Published

2014
2014
2024
2024

Publication Types

Select...
2
2
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 12 publications
0
5
0
1
Order By: Relevance
“…always exists when is strongly differentiable 7 at 0 , and it is equal to the gradient ∇ ( 0 ). Moreover, we show in Proposition 1 that the vector ( , , , ) , corresponding to the Clifford ratio ( , , ) Δ ( , , ) −1 , can always be written as a sum of quotients between numbers (as numerators) and vectors (as denominators), strongly resembling the scalar difference quotients; more precisely, we will prove that…”
Section: Summary Of This Workmentioning
confidence: 99%
“…always exists when is strongly differentiable 7 at 0 , and it is equal to the gradient ∇ ( 0 ). Moreover, we show in Proposition 1 that the vector ( , , , ) , corresponding to the Clifford ratio ( , , ) Δ ( , , ) −1 , can always be written as a sum of quotients between numbers (as numerators) and vectors (as denominators), strongly resembling the scalar difference quotients; more precisely, we will prove that…”
Section: Summary Of This Workmentioning
confidence: 99%
“…approximate the area of portions of the surface s from every sequence of inscribed triangular 7 polyhedra uniformly convergent to that portion 8 . In particular, we apply Algorithm (6.4) to the triangulation of a circular cylinder of the famous Schwarz 9 area paradox 10 , showing that the approximating inscribed balanced mean bivectors 11 do converge to the tangent bivectors without any restriction of the approximating triangular mesh.…”
Section: Goalsmentioning
confidence: 99%
“…Thus, Algorithms (6.4) and (6.7) restore many of the analogies between curves and surfaces. 18 Suggested readings are [8], [3], [19] and [20]. 19 Giuseppe Peano (1858Peano ( -1932.…”
Section: Two Questions Naturally Arisementioning
confidence: 99%
See 1 more Smart Citation
“…Wpisywane wielościany miały trójkątne ściany i ich rzuty na płaszczyznę xy były wymienionymi wcześniej trójkątami T 1 i T 2 . Kempisty pokazał, że wprowadzenie funkcji trójkąta pozwoliło na rozszerzenie klas powierzchni, do których stosuje się jego metoda (nazywana metodą triangulacji).Kempisty kontynuował swoje rozważania w pracy[K42], która dotyczyła pola Lebesgue'a A(S) powierzchni S danej równaniami parametrycznymix = x(u, v), y = y(u, v), z = z(u, v), gdzie podane funkcje są ciągłe na kwadracie Q : 0 u, v 1 i mają pochodne cząstkowe prawie wszędzie w Q. Rezultaty Kempistego [K35], [K38], [K40] -[K42] zostały zauważone w książkach (chronologicznie): Saksa [72], Radó [70] i Cesari [17] oraz w pracach: Frécheta [23], Toralballa[81], Alperta-Toralballa[3] i Grandona-Perrina[24]. Przestrzenie Kempistego.…”
unclassified