In this paper, we explore aggregative games over networks of multi-integrator agents with coupled constraints. To reach the general Nash equilibrium of an aggregative game, a distributed strategy-updating rule is proposed by a combination of the coordination of Lagrange multipliers and the estimation of the aggregator. Each player has only access to partial-decision information and communicates with his neighbors in a weight-balanced digraph which characterizes players' preferences as to the values of information received from neighbors. We first consider networks of double-integrator agents and then focus on multi-integrator agents. The effectiveness of the proposed strategy-updating rules is demonstrated by analyzing the convergence of corresponding dynamical systems via the Lyapunov stability theory, singular perturbation theory and passive theory. Numerical examples are given to illustrate our results.