In this paper, we discuss the consensus tracking problem by introducing two iterative learning control (ILC) protocols (namely, Dα-type and PDα-type) with initial state error for fractional-order homogenous and heterogenous multi-agent systems (MASs), respectively. The initial state of each agent is fixed at the same position away from the desired one for iterations. For both homogenous and heterogenous MASs, the Dα-type ILC rule is first designed and analyzed, and the asymptotical convergence property is carefully derived. Then, an additional P-type component is added to formulate a PDα-type ILC rule, which also guarantees the asymptotical consensus performance. Moreover, it turns out that the PDα-type ILC rule can further adjust the final performance. Two numerical examples are provided to verify the theoretical results.