This research delves into the impact of climate change on the wood traits of Cunninghamia lanceolata across various altitudinal gradients, aiming to understand the influence of altitude and climatic factors like temperature and precipitation on key wood characteristics. Employing a comprehensive approach, samples were collected from different altitudes for detailed phenotypic analysis. Methods included Pearson correlation, principal component analysis, cluster analysis, and random forest analysis. Results revealed significant variations in wood traits such as heartwood ratio, tracheid length, and width across altitudes. Notably, wood traits in lower- and middle-elevation populations exhibited higher variability compared to higher elevations, indicating greater environmental diversity and genetic adaptability at these altitudes. Climatic factors, particularly temperature and precipitation, were found to increasingly influence wood trait variation with altitude. The research concludes that the adaptation of Cunninghamia lanceolata to climate change is significantly influenced by both altitudinal and climatic factors, highlighting their importance in forest genetic breeding and conservation strategies amidst global climate change.