2016
DOI: 10.3390/rs8060506
|View full text |Cite
|
Sign up to set email alerts
|

Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection

Abstract: When exploited in remote sensing analysis, a reliable change rule with transfer ability can detect changes accurately and be applied widely. However, in practice, the complexity of land cover changes makes it difficult to use only one change rule or change feature learned from a given multi-temporal dataset to detect any other new target images without applying other learning processes. In this study, we consider the design of an efficient change rule having transferability to detect both binary and multi-clas… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
149
0
2

Year Published

2017
2017
2022
2022

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 287 publications
(152 citation statements)
references
References 39 publications
1
149
0
2
Order By: Relevance
“…However, for sequential tasks, recurrent network architectures, which provide an iterative framework to process sequential information, are generally better suited. Recent approaches utilize recurrent architectures for change detection [23][24][25], identification of sea level anomalies [26] and land cover classification [27]. For long-term dependencies, Jia et al [24] proposed a new cell architecture, which maintains two separate cell states for single-and multi-seasonal long-term dependencies.…”
Section: Related Workmentioning
confidence: 99%
“…However, for sequential tasks, recurrent network architectures, which provide an iterative framework to process sequential information, are generally better suited. Recent approaches utilize recurrent architectures for change detection [23][24][25], identification of sea level anomalies [26] and land cover classification [27]. For long-term dependencies, Jia et al [24] proposed a new cell architecture, which maintains two separate cell states for single-and multi-seasonal long-term dependencies.…”
Section: Related Workmentioning
confidence: 99%
“…Методи глибинного навчання підтвердили свою ефективність для оброб-лення як оптичних (гіперспектральних та мультиспектральних), так і радар-них зображень, побудови різних типів земної поверхні: ідентифікації доріг, будинків [55,[63][64][65]. Найбільш поширені моделі в глибинному навчанні для аналізу геопросторових даних -це згорткові нейронні мережі, глибинні автокодувальники (Deep Auto-encoders (DAE)), глибинні мережі переконань та рекурентні мережі з моделлю тривалої короткочасної пам'яті [55,[65][66][67][68].…”
Section: методи класифікації земного покриву на основі «великих» обсяunclassified
“…While these approaches follow a generic feature extraction and classification pipeline, Siachalou et al (2015) utilize a hidden markov model (HMM) approach which retains sequential consistency of multi-temporal observations on four LANDSAT-7 and one RAPIDEYE observation of Thessaloníki, Greece in 2010. Methodically similar to ours, Lyu et al (2016) LSTM Cell utilize RNNs and LSTM architectures to multispectral LANDSAT-7 and hyperspectral EO-1 HYPERION images, but-in contrast to our approach-for the purpose of change detection.…”
Section: Related Workmentioning
confidence: 99%