Incorporation of individual learning and forgetting behaviors within worker-task assignment models produces a mixed integer nonlinear program (MINLP) problem, which is difficult to solve as a NP hard due to its nonlinearity in the objective function. Previous studies commonly assume homogeneity among workers in workforce scheduling that takes account of learning and forgetting characteristics. This paper expands previous researches by considering heterogeneous individual learning/forgetting, and investigates the impact of worker heterogeneity in initial expertise, steadystate productivity, learning and forgetting on system performance to assist manager's decision-making in worker-task assignments without tackling complex MINLP models. In order to understand the performance implications of workforce heterogeneity, this paper examines analytically how heterogeneity in each of the four parameters of the exponential learning and forgetting (L/F) model affects system performance in three cases : consecutive assignments with no break, n breaks of s-length each, and total b break-periods occurred over T periods. The study presents the direction of change in worker performance under different assignment schedules as the variance in initial expertise, steady-state productivity, learning or forgetting increases. Thus, it implies whether having more heterogenous workforce in terms of each of four parameters in the L/F model is desired or not in different schedules from the perspective of system productivity measurement.