2020
DOI: 10.48550/arxiv.2005.09833
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Learning and Reasoning for Robot Dialog and Navigation Tasks

Abstract: Reinforcement learning and probabilistic reasoning algorithms aim at learning from interaction experiences and reasoning with probabilistic contextual knowledge respectively. In this research, we develop algorithms for robot task completions, while looking into the complementary strengths of reinforcement learning and probabilistic reasoning techniques. The robots learn from trial-and-error experiences to augment their declarative knowledge base, and the augmented knowledge can be used for speeding up the lear… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?