2018
DOI: 10.48550/arxiv.1812.11775
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Learning and Selfconfirming Equilibria in Network Games

Abstract: Consider a set of agents who play a network game repeatedly. Agents may not know the network. They may even be unaware that they are interacting with other agents in a network. Possibly, they just understand that their payoffs depend on an unknown state that in reality is an aggregate of the actions of their neighbors. Each time, every agent chooses an action that maximizes her subjective expected payoff and then updates her beliefs according to what she observes. In particular, we assume that each agent only … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?