The hedge algebras theory has the potential to make significant applications in the field of computational intelligence. The purpose of the present study is to improve the control performance of the hedge algebras–based controller by tuning its control rules and apply the hedge algebras–based controller using the tuned rule base in vibration control of structures. The authors propose a “tuning coefficient” to express the impact of each rule of the controller in the control process. These control rules are adjusted by optimizing the above tuning coefficient. The tuned controller is then used to reduce the dynamic response of structures subjected to different excitations. The adjusted rule base is more appropriate for the model to be controlled, and it allows enhancing the control performance of the system. The proposed approach is uncomplicated and transparent, and it allows preserving the monotonous feature of the rule base.