Autoreg 2019 2019
DOI: 10.51202/9783181023495-25
|View full text |Cite
|
Sign up to set email alerts
|

Learning-Based Path Following Control for an Over-Actuated Robotic Vehicle

Abstract: Für autonome Fahrzeuge stellt die Pfadfolgeregelung eine Schlüsselfunktion dar. Die Pfadfolgeregelung steuert hierbei Antrieb, Lenkung und Bremse derart, dass das Fahrzeug einem geometrischen Pfad mit einer Referenzgeschwindigkeit folgt. Für die Auslegung von leistungsfähigen modellbasierten Pfadfolgereglern wird ein ausreichend genaues Synthesemodell des Fahrzeuges benötigt. Der Entwurf, die Parametrierung und das Testen von modellbasierten Pfadfolgereglern, sowie das Ableiten eines Synthesemodells ist allerd… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
14
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(14 citation statements)
references
References 15 publications
0
14
0
Order By: Relevance
“…This term dominates the overall reward, since it is the only term multiplied by one (cf. Equation ( 5)), which is in-line with the hierarchical reward structure of prioritizing the minimization of the lateral position error first [14]. Furthermore, the value of g θ y e P y is multiplied by the reward term r e e P ψ , e P v x consisting of the Gaussian-like functions g θ ψ e P ψ and g θ vx e P v x (cf.…”
Section: Design Of the Reward Functionmentioning
confidence: 98%
See 4 more Smart Citations
“…This term dominates the overall reward, since it is the only term multiplied by one (cf. Equation ( 5)), which is in-line with the hierarchical reward structure of prioritizing the minimization of the lateral position error first [14]. Furthermore, the value of g θ y e P y is multiplied by the reward term r e e P ψ , e P v x consisting of the Gaussian-like functions g θ ψ e P ψ and g θ vx e P v x (cf.…”
Section: Design Of the Reward Functionmentioning
confidence: 98%
“…To overcome this issue and train robust agents for a path-following control task in the presence of uncertain and changing dynamics parameters, we apply dynamics randomization during the reinforcement learning process in this work. The underlying path following control problem considered in this paper is based on our previous work in [14] and is introduced in detail in Appendix A. We assume that the path boundaries can be detected in each time step and that a path planning module, such as in [15], is given.…”
Section: Sensors Actuatorsmentioning
confidence: 99%
See 3 more Smart Citations