2021
DOI: 10.48550/arxiv.2107.07049
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Learning-based Spectrum Sensing and Access in Cognitive Radios via Approximate POMDPs

Abstract: A novel LEarning-based Spectrum Sensing and Access (LESSA) framework is proposed, wherein a cognitive radio (CR) learns a time-frequency correlation model underlying spectrum occupancy of licensed users (LUs) in a radio ecosystem; concurrently, it devises an approximately optimal spectrum sensing and access policy under sensing constraints. A Baum-Welch algorithm is proposed to learn a parametric Markov transition model of LUs' spectrum occupancy based on noisy spectrum measurements. Spectrum sensing and acces… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?