Abstract:Over the past decade, several approaches have been proposed to learn disentangled representations for video prediction. However, reported experiments are mostly based on standard benchmark datasets such as Moving MNIST and Bouncing Balls. In this work, we address the problem of learning disentangled representation for video prediction in an industrial environment. To this end, we use decompositional disentangled variational autoencoder, a deep generative model that aims to decompose and recognize overlapped bo… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.