“…Machine-learning techniques that have been applied to dynamic pricing problems include evolutionary algorithms (Ramezani et al, 2011), particle swarm optimization (Mullen et al, 2006), reinforcement learning and Q-learning (Kutschinski et al, 2003, Raju et al, 2006, Könönen, 2006, Chinthalapati et al, 2006, Schwind, 2007, Cheng, 2008, Han et al, Vengerov, 2008, Cheng, 2009, Jintian and Lei, 2009, Han, 2010, Collins and Thomas, 2012, simulated annealing (Xia and Dube, 2007), Markov chain Monte Carlo methods (Chung et al, 2012), the aggregating algorithm (Levina et al, 2009) by Vovk (1990), goal-directed and derivative-following strategies in simulation (DiMicco et al, 2003), neural networks (Brooks et al, 1999, Kong, 2004, Ghose and Tran, 2009, Liu and Wang, 2013, and direct search methods (Brooks et al, 1999, Brooks et al, 2002.…”