2022
DOI: 10.1007/978-3-031-18843-5_16
|View full text |Cite
|
Sign up to set email alerts
|

Learning from Imbalanced Data Using an Evidential Undersampling-Based Ensemble

Abstract: In many real-world binary classification problems, one class tends to be heavily underrepresented when it consists of far fewer observations than the other class. This results in creating a biased model with undesirable performance. Different techniques, such as undersampling, have been proposed to fix this issue. Ensemble methods have also been proven to be a good strategy to improve the performance of the resulting model in the case of class imbalance. In this paper, we propose an evidential undersampling-ba… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 36 publications
0
0
0
1
Order By: Relevance
“…La literatura existente sugiere varias técnicas para sobrellevar tales casos, en aras de no perder instancias o filas para el análisis como sucede con el submuestreo de clases mayoritarias (Grina et al, 2022), se optó por el empleo de SMOTE para el sobre muestreo de las indicadas clases minoritarias.…”
Section: Aumento De Datosunclassified
“…La literatura existente sugiere varias técnicas para sobrellevar tales casos, en aras de no perder instancias o filas para el análisis como sucede con el submuestreo de clases mayoritarias (Grina et al, 2022), se optó por el empleo de SMOTE para el sobre muestreo de las indicadas clases minoritarias.…”
Section: Aumento De Datosunclassified