In this paper, a learning scheme using a fuzzy controller to generate walking gaits is developed. The learning scheme uses a fuzzy controller combined with a linearized inverse biped model. The controller provides the control signals at each control time instant. The algorithm used to train the controller is "backpropagation through time". The linearized inverse biped model provides the error signals for backpropagation through the controller at control time instants. Given prespecified constraints such as the step length, crossing clearance, and walking speed, the control scheme can generate the gait that satisfies these constraints. Simulation results are reported for a five-link biped robot.