Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Recent improvements formulated in the area of video captioning have brought rapid revolutions in its methods and the performance of its models. Machine learning and deep learning techniques are both employed in this regard. However, there is a lack of tracing the latest studies and their remarkable results. Although several studies have been proposed employing the ML and DL algorithms in different other areas, there is no systematic review utilizing the video captioning task. This study aims to examine, evaluate, and synthesize the studies into a thorough Systematic Literature Review (SLR) that provides a general overview of the methods used for video captioning. We performed the SLR to determine the research problems under which machine learning models were preferred over the deep learning models and vice versa. We collected a total of 1,656 studies retrieved from four electronic databases; Scopus, WoS, IEEE Xplore, and ACM, based on our search string from which 162 published studies passed the selection criteria related to one primary and two secondary research questions after a systematic process. Moreover, insufficient data collection and inefficient comparison of results are common issues during the review process. We conclude that the 2D/3D CNN for video feature extraction and LSTM for caption generation, BLEU and CIDEr performance evaluation tools and MSVD dataset are most frequently employed for video captioning. Our study is the pioneer in comparing the implementation of ML and DL algorithms employing the video captioning area. Thus, our study will accelerate the critical assessment of the state-of-the-art in other research fields of video analysis and human-computer interaction.
Recent improvements formulated in the area of video captioning have brought rapid revolutions in its methods and the performance of its models. Machine learning and deep learning techniques are both employed in this regard. However, there is a lack of tracing the latest studies and their remarkable results. Although several studies have been proposed employing the ML and DL algorithms in different other areas, there is no systematic review utilizing the video captioning task. This study aims to examine, evaluate, and synthesize the studies into a thorough Systematic Literature Review (SLR) that provides a general overview of the methods used for video captioning. We performed the SLR to determine the research problems under which machine learning models were preferred over the deep learning models and vice versa. We collected a total of 1,656 studies retrieved from four electronic databases; Scopus, WoS, IEEE Xplore, and ACM, based on our search string from which 162 published studies passed the selection criteria related to one primary and two secondary research questions after a systematic process. Moreover, insufficient data collection and inefficient comparison of results are common issues during the review process. We conclude that the 2D/3D CNN for video feature extraction and LSTM for caption generation, BLEU and CIDEr performance evaluation tools and MSVD dataset are most frequently employed for video captioning. Our study is the pioneer in comparing the implementation of ML and DL algorithms employing the video captioning area. Thus, our study will accelerate the critical assessment of the state-of-the-art in other research fields of video analysis and human-computer interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.