Multi-agent inverse reinforcement learning (MIRL) can be used to learn reward functions from agents in social environments. To model realistic social dynamics and outcomes, MIRL methods must account for suboptimal human reasoning and behavior. Traditional formalisms of game theory provide computationally tractable behavioral models, but assume agents have unrealistic cognitive capabilities. The objective of this research is to identify and compare mechanisms used in MIRL methods to a) handle the presence of noise, biases and heuristics in agent decision making and b) model realistic equilibrium solution concepts based on suboptimal behavior. MIRL research was systematically reviewed to identify solution attempts for these challenges. The methods and results of these studies were analyzed and compared based on factors including performance accuracy, efficiency, and descriptive quality. We found that the primary methods for handling noise, biases and heuristics in MIRL were extensions of Maximum Entropy (MaxEnt) IRL to multi-agent settings. We also found that traditional Nash equilibrium (NE) solution concepts were ill-suited to model human behavior, and more success could be found with generalization of the NE. These solutions include the correlated equilibrium, logistic stochastic best response equilibrium and entropy regularized mean field NE. Methods which use recursive reasoning or updating also perform well, including the feedback NE and archive multi-agent adversarial IRL. Success in modeling specific biases and heuristics in single-agent IRL and promising results using a Theory of Mind approach in MIRL imply that modeling specific biases and heuristics in MIRL may be useful. Flexibility and unbiased inference in the identified alternative solution concepts suggest that a solution concept which has both recursive and generalized characteristics may perform well at modeling realistic social interactions.