Proceedings of the 30th International Conference on Scientific and Statistical Database Management 2018
DOI: 10.1145/3221269.3223035
|View full text |Cite
|
Sign up to set email alerts
|

Learning interesting attributes for automated data categorization

Abstract: This work proposes and evaluates a novel approach to determine interesting categorical attributes for lists of entities. Once identified, such categories are of immense value to allow constraining (filtering) a current view of a user to subsets of entities. We show how a classifier is trained that is able to tell whether or not a categorical attribute can act as a constraint, in the sense of human-perceived interestingness. The training data is harnessed from Web tables, treating the presence or absence of a t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?