2017
DOI: 10.17781/p002277
|View full text |Cite
|
Sign up to set email alerts
|

Learning Maliciousness in Cybersecurity Graphs

Abstract: Statistical relational learning is concerned with inferring patterns from data explicitly modeled as graphs. In this work, we present an approach to learning latent topological and attribute features of multi-relational property graphs in settings where a fraction of node attributes are missing. This work draws upon prior work based on tensor factorization. We demonstrate how learned latent embeddings can be used to approximate the missing attributes. The methods explored are applied to the problem of detectin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 11 publications
0
0
0
Order By: Relevance