Perturbations, Optimization, and Statistics 2016
DOI: 10.7551/mitpress/10761.003.0006
|View full text |Cite
|
Sign up to set email alerts
|

Learning Maximum A-Posteriori Perturbation Models

Abstract: Perturbation models are families of distributions induced from perturbations. They combine randomization of the parameters with maximization to draw unbiased samples. Unlike Gibbs' distributions, a perturbation model defined on the basis of low order statistics still gives rise to high order dependencies. In this paper, we analyze, extend and seek to estimate such dependencies from data. In particular, we shift the modelling focus from the parameters of the Gibbs' distribution used as a base model to the space… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2016
2016
2016
2016

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 23 publications
0
0
0
Order By: Relevance