2022
DOI: 10.48550/arxiv.2205.10621
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Learning Meta Representations of One-shot Relations for Temporal Knowledge Graph Link Prediction

Abstract: Few-shot relational learning for static knowledge graphs (KGs) has drawn greater interest in recent years, while few-shot learning for temporal knowledge graphs (TKGs) has hardly been studied. Compared to KGs, TKGs contain rich temporal information, thus requiring temporal reasoning techniques for modeling. This poses a greater challenge in learning few-shot relations in the temporal context. In this paper, we revisit the previous work related to few-shot relational learning in KGs and extend two existing TKG … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?