Abstract:Building a voice conversion system for noisy target speakers, such as users providing noisy samples or Internet found data, is a challenging task since the use of contaminated speech in model training will apparently degrade the conversion performance. In this paper, we leverage the advances of our recently proposed Glow-WaveGAN [1] and propose a noise-independent speech representation learning approach for high-quality voice conversion for noisy target speakers. Specifically, we learn a latent feature space w… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.