The learning-based model predictive control (LB-MPC) is an effective and critical method to solve the path tracking problem in mobile platforms under uncertain disturbances. It is well known that the machine learning (ML) methods use the historical and real-time measurement data to build data-driven prediction models. The model predictive control (MPC) provides an integrated solution for control systems with interactive variables, complex dynamics, and various constraints. The LB-MPC combines the advantages of ML and MPC. In this work, the LB-MPC technique is summarized, and the application of path tracking control in mobile platforms is discussed by considering three aspects, namely, learning and optimizing the prediction model, the controller design, and the controller output under uncertain disturbances. Furthermore, some research challenges faced by LB-MPC for path tracking control in mobile platforms are discussed.