2023
DOI: 10.3389/fnbot.2023.1089270
|View full text |Cite
|
Sign up to set email alerts
|

Learning robotic manipulation skills with multiple semantic goals by conservative curiosity-motivated exploration

Abstract: Reinforcement learning (RL) empowers the agent to learn robotic manipulation skills autonomously. Compared with traditional single-goal RL, semantic-goal-conditioned RL expands the agent capacity to accomplish multiple semantic manipulation instructions. However, due to sparsely distributed semantic goals and sparse-reward agent-environment interactions, the hard exploration problem arises and impedes the agent training process. In traditional RL, curiosity-motivated exploration shows effectiveness in solving … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?