This study investigates the relationship between the intelligibility and quality of modified speech in noise and in quiet. Speech signals were processed by seven algorithms designed to increase speech intelligibility in noise without altering speech intensity. In three noise maskers, including both stationary and fluctuating noise at two signal-to-noise ratios (SNR), listeners identified keywords from unmodified or modified sentences. The intelligibility performance of each type of speech was measured as the listeners' word recognition rate in each condition, while the quality was rated as a mean opinion score. In quiet, only the perceptual quality of each type of speech was assessed. The results suggest that when listening in noise, modification performance on improving intelligibility is more important than its potential negative impact on speech quality. However, when listening in quiet or at SNRs in which intelligibility is no longer an issue to listeners, the impact to speech quality due to modification becomes a concern.