Learning Subject-Invariant Representations from Speech-Evoked EEG Using Variational Autoencoders
Lies Bollens,
Tom Francart,
Hugo Van Hamme
Abstract:The electroencephalogram (EEG) is a powerful method to understand how the brain processes speech. Linear models have recently been replaced for this purpose with deep neural networks and yield promising results. In related EEG classification fields, it is shown that explicitly modeling subject-invariant features improves generalization of models across subjects and benefits classification accuracy. In this work, we adapt factorized hierarchical variational autoencoders to exploit parallel EEG recordings of the… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.