2024
DOI: 10.1002/wics.1646
|View full text |Cite
|
Sign up to set email alerts
|

Learning the sparse prior: Modern approaches

Guan‐Ju Peng

Abstract: The sparse prior has been widely adopted to establish data models for numerous applications. In this context, most of them are based on one of three foundational paradigms: the conventional sparse representation, the convolutional sparse representation, and the multi‐layer convolutional sparse representation. When the data morphology has been adequately addressed, a sparse representation can be obtained by solving the sparse coding problem specified by the data model. This article presents a comprehensive over… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 82 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?