Current reading comprehension methods generalise well to in-distribution test sets, yet perform poorly on adversarially selected data. Prior work on adversarial inputs typically studies model oversensitivity: semantically invariant text perturbations that cause a model's prediction to change. Here we focus on the complementary problem: excessive prediction undersensitivity, where input text is meaningfully changed but the model's prediction does not, even though it should. We formulate an adversarial attack which searches among semantic variations of the question for which a model erroneously predicts the same answer, and with even higher probability. We demonstrate that models trained on both SQuAD2.0 and NewsQA are vulnerable to this attack, and then investigate data augmentation and adversarial training as defences. Both substantially decrease adversarial vulnerability, which generalises to held-out data and held-out attack spaces. Addressing undersensitivity furthermore improves model robustness on the previously introduced ADDSENT and ADDONE-SENT datasets, and models generalise better when facing train/evaluation distribution mismatch: they are less prone to overly rely on shallow predictive cues present only in the training set, and outperform a conventional model by as much as 10.9% F 1 .