“…Figure 7 illustrates recall under different IoU thresholds and number of proposals. Our algorithm is superior than or on par with previous state-of-the-arts, including: BING (Cheng et al, 2014), EdgeBox (Zitnick and Dollar, 2014), GOP (Krahenbuhl and Koltun, 2014), Selective Search (Uijlings et al, 2013), MCG (Arbeláez et al, 2014), Endres (Endres and Hoiem, 2014), Prims (Manén et al, 2013), Rigor (Humayun et al, 2014), Faster RCNN (Ren et al, 2015), AttractioNet (Gidaris and Komodakis, 2016), DeepBox (Kuo et al, 2015), CoGen (Hayder et al, 2016) (Pinheiro et al, 2016), and FPN (Lin et al, 2017). Table 3 reports the average recall vs. the number of proposals (from 10 to 1000) and the size of objects on ILSVRC.…”