A seleção genômica ampla (Genome Wide Selection - GWS), utiliza marcadores moleculares distribuídos ao longo de todo o genoma a fim de predizer o mérito genético de plantas e animais. Os métodos de aprendizado de máquina (ML) e redes neurais artificiais (ANN) não são parametrizados e podem desenvolver modelos mais precisos e parcimoniosos para análise de GWS. Com o intuito de avaliar diferentes métodos de ML e ANN para avaliar a predição baseada em GWS, propusemos duas questões a serem respondidas por esse projeto de pesquisa. A primeira é que métodos diferentes proporcionariam previsões diversas de acordo com a complexidade da característica analisada e a segunda seria que a identificação de marcadores associados aos QTLs (Quantitative Trait Locis), também dependeria da complexidade da característica e do método analisado. Dois artigos foram desenvolvidos para responder essas questões. No primeiro artigo, o objetivo foi avaliar a precisão geral e a variabilidade do desempenho de predição de métodos baseados em ML (Decision Tree, Boosting, Bagging, Random Forest e MARS - Multivariate Adaptive Regression Splines) e ANN (Multilayer Perceptron, Radial Basis Function) comparadas ao G-BLUP em análises de predição genômica para características simuladas com diferentes números de genes na presença de epistasia e com diferentes graus de herdabilidades. No segundo artigo, o objetivo foi avaliar os métodos na associação de marcadores importantes identificados com as regiões de presença do QTLs, por meio do conjunto de dados simulado, considerando características com diferentes números de genes na presença de epistasia e de diferentes herdabilidade. Uma população F 2 em equilíbrio de Hardy-Weinberg foi simulada, constituída por 1000 indivíduos e 10 grupos de ligação de 200 cM, cada, correspondendo a 4010 SNP (Single Nucleotide Polymorphism). Na predição, o aumento no número de QTL, beneficiou principalmente os métodos de redes neurais e o G-BLUP para R² e REQM. Para os demais métodos, nos cenários de 40 QTLs ou mais, o aumento do número de QTLs afetou positivamente os resultados dos parâmetros avaliados. A variação na herdabilidade provocou efeito inverso nos valores de R² e REQM. Os métodos MARS não aditivos apresentaram R² alto para caracteres oligogênicas e para características poligênicas com alta herdabilidade e com 240 QTLs ou mais. Com relação a identificação de marcadores associados aos QTLs, a maioria dos métodos apresentaram maior índice de acertos na identificação dos marcadores em cenários com menor número de QTLs e com maior herdabilidade. A MARS 3 e o Boosting apresentaram alta capacidade de identificar os marcadores de importância, considerando as regiões associadas aos QTLs. O maior índice de erros também ocorreu em cenários com menor número de QTLs, mas com menor herdabilidade. A herdabilidade afetou positivamente o índice relativo na identificação dos marcadores associados aos QTLs. Nos cenários de 40 QTLs ou mais, o aumento do número de QTLs também afetou positivamente o índice relativo para a maioria dos métodos. Contudo, os melhores resultados foram encontrados para o cenário com maior herdabilidade e com 8 QTLs. Os métodos MARS 1, MARS 2, Boosting e Bagging foram os mais efetivos na detecção de marcadores importantes ao longo do genoma, principalmente para as características com 8 e 240 QTLs. A variação na herdabilidade e no número de QTLs impactou o desempenho dos métodos tanto para predição quanto para identificação dos marcadores associados a QTLs. Assim, a distribuição dos QTL nos grupos de ligação pode ser o principal atributo a ser avaliado na predição dos valores genéticos e identificação de marcas associadas à QTLs, quando o experimento é bem conduzido a fim de se obter um maior valor para a herdabilidade. Os métodos de ML e de ANN demonstraram alto potencial para predição de valores genéticos em caracteres com efeitos dominantes e epistáticos. Já para a identificação de marcadores associados às regiões de presença de QTLs, os métodos de aprendizado de máquinas são mais eficientes. O uso de diferentes métodos estatísticos, redes neurais e aprendizado de máquina resultou em diferentes consequências influenciadas pela complexidade e particularidade das características analisadas. Portanto, recomenda-se que ao avaliar a predição de valores genéticos e a importância de marcadores, o uso de múltiplas abordagens seja utilizado, a fim de escolher o melhor método a ser utilizado. Palavras-chave: Inteligência artificial. Seleção Genômica ampla. Importância de variáveis. Característica Quantitativa.