2016
DOI: 10.1108/ijwis-12-2015-0046
|View full text |Cite
|
Sign up to set email alerts
|

Learning to rank with click-through features in a reinforcement learning framework

Abstract: Purpose Learning to rank algorithms inherently faces many challenges. The most important challenges could be listed as high-dimensionality of the training data, the dynamic nature of Web information resources and lack of click-through data. High dimensionality of the training data affects effectiveness and efficiency of learning algorithms. Besides, most of learning to rank benchmark datasets do not include click-through data as a very rich source of information about the search behavior of users while dealing… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 27 publications
0
1
0
1
Order By: Relevance
“…Salah satu alat untuk mengukur dari kinerja suatu sistem TI adalah model kematangan(Maturity Level). Befungsi untuk meninjau setiap proses TI dengan mengunakan metode penilaian, sehingga perusahaan bisa mengetahui berada dilevel mana kematangaan system yang ada dan dapat terus meningkatkan level sampai tingkat tertinggi [9].…”
Section: A Pendahuluanunclassified
“…Salah satu alat untuk mengukur dari kinerja suatu sistem TI adalah model kematangan(Maturity Level). Befungsi untuk meninjau setiap proses TI dengan mengunakan metode penilaian, sehingga perusahaan bisa mengetahui berada dilevel mana kematangaan system yang ada dan dapat terus meningkatkan level sampai tingkat tertinggi [9].…”
Section: A Pendahuluanunclassified
“…Hayden et al [12] proposed a global DML algorithm, which maximizes the sum of all distances between samples from different classes and introduces two constraints to obtain an effective distance metric. Information theoretic metric learning (ITML) is a classic DML algorithm that transforms the optimization procedure of DML into a Bregman optimization problem [13]. The algorithm minimizes the relative entropy of two multivariate Gaussian distributions to optimize the distance metric matrix.…”
Section: Introductionmentioning
confidence: 99%