2021
DOI: 10.48550/arxiv.2112.03237
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Learning to Reason from General Concepts to Fine-grained Tokens for Discriminative Phrase Detection

Abstract: Phrase detection requires methods to identify if a phrase is relevant to an image and then localize it if applicable. A key challenge in training more discriminative phrase detection models is sampling hard-negatives. This is because few phrases are annotated of the nearly infinite variations that may be applicable. To address this problem, we introduce PFP-Net, a phrase detector that differentiates between phrases through two novel methods. First, we group together phrases of related objects into coarse group… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?