Abstract:Applications of graphical models often require the use of approximate inference, such as sequential importance sampling (SIS), for estimation of the model distribution given partial evidence, i.e., the target distribution. However, when SIS proposal and target distributions are dissimilar, such procedures lead to biased estimates or require a prohibitive number of samples. We introduce ReBaSIS, a method that better approximates the target distribution by sampling variable by variable from existing importance s… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.