A decade has passed since the last published review of math anxiety, which was carried out by Ashcraft and Ridley (2005). Given the considerable interest aroused by this topic in recent years and the growing number of publications related to it, the present article aims to provide a full and updated review of the field, ranging from the initial studies of the impact of math anxiety on numerical cognition, to the latest research exploring its electrophysiological correlates and brain bases from a cognitive neuroscience perspective. Finally, this review describes the factors and mechanisms that have been claimed to play a role in the origins and/or maintenance of math anxiety, and it examines in detail the main explanations proposed to account for the negative effects of math anxiety on performance: competition for working memory resources, a deficit in a low-level numerical representation, and inhibition/attentional control deficit.Keywords Math anxiety . Numerical cognition . Brain correlates . fMRI . ERPs . Working memory . Inhibitory deficit . Attentional control deficit . Numerical magnitude representation As far as we know, the tutorial review carried out by Ashcraft and Ridley (2005) and published in Campbell's Handbook of Mathematical Cognition is the only general review carried out in the field of math anxiety to date. Given that several studies have been conducted since then, this review article aims to examine the current state of knowledge about math anxiety, ranging from the initial studies of the effect of math anxiety on numerical cognition (conducted by Ashcraft and collaborators), through to the most recent publications on the bases of math anxiety from the perspective of cognitive neuroscience. This review also updates the main explanations for the effects of math anxiety on math performance, including a recent account on which our discussion of the latest findings on this topic is based and that has not previously been examined in a review.With this objective in mind, we begin by defining math anxiety and examining its relationship with other variables. We then explore the principal proposed explanations for its negative effects on performance (competition for working memory [WM] resources, inhibitory/attentional control deficit, and deficit in low-level numerical processing), as well as the main theories regarding its origin and maintenance (exposure to negative experiences, genetic factors, the role of math ability, attention, WM, and error processing). We end the review by examining the brain correlates of math anxiety-specifically, the findings of research using event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI)-and also by making certain recommendations that teachers, parents, and psychologists might take into account in order to help children reduce their levels of mathematical anxiety.