2024
DOI: 10.1609/aaai.v38i18.30064
|View full text |Cite
|
Sign up to set email alerts
|

Learning to Stop Cut Generation for Efficient Mixed-Integer Linear Programming

Haotian Ling,
Zhihai Wang,
Jie Wang

Abstract: Cutting planes (cuts) play an important role in solving mixed-integer linear programs (MILPs), as they significantly tighten the dual bounds and improve the solving performance. A key problem for cuts is when to stop cuts generation, which is important for the efficiency of solving MILPs. However, many modern MILP solvers employ hard-coded heuristics to tackle this problem, which tends to neglect underlying patterns among MILPs from certain applications. To address this challenge, we formulate the cuts generat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?