“…• Supervised: AdaBoost with PI (Chen et al [21], Liu et al [22]), SVM+ for risk modelling (Ribeiro et al [23], [24]), SVM+ and multi-task learning (Liang and Cherkassky [25], Liang and Cherkassky [26], Liang et al [27], Cai and Cherkassky [28], Tang et al [29]), Regression Forests for facial feature detection with privileged head pose or gender (Yang and Patras [30]), image classification using privileged attributes, bounding box annotations, and textual descripting tags (Sharmanska et al [31], Sharmanska et al [32], Li et al [33], Wang and Ji [34], Yan et al [35], Rodríguez et al [36]), structured SVM (SSVM) prediction algorithm for image object localization using PI (Feyereisl et al [37]), unifying distillation and PI (Lopez-Paz et al [38]), multi-instance learning for action and event recognition with privileged web data (Niu et al [39]), knowledge transfer for neural networks (Vapnik and Izmailov [8]), image object detection using PI (Hoffman et al [40]), domain adaptation (Sarafianos et al [41]), multiview privileged SVMs (Tang et al [42]), deep learning under PI (Lambert et al [43]), PI for structured output prediction (Zhang et al [44]), label enhancement with multi-label learning (Zhu et al [45]), PI for the diagnosis of Alzheimer's disease (Li et al [46], Ganaie and Tanveer [47]), breast (Shaikh et al [48]) and liver (Zhang et al [49]) cancers, PI for image super-resolution using CNNs (Lee et al [50]), robust SVM+ (Li et al [9], Wu et al [51]), twin SVM with PI (Che et al [52]), robust twin SVM+ (Li et al [53]), Support Vector ...…”