Abstract:We review the Schwinger-Keldysh, or in-in, formalism for studying quantum dynamics of systems out-of-equilibrium. The main motivation is to rephrase well known facts in the subject in a mathematically elegant setting, by exhibiting a set of BRST symmetries inherent in the construction. We show how these fundamental symmetries can be made manifest by working in a superspace formalism. We argue that this rephrasing is extremely efficacious in understanding low energy dynamics following the usual renormalization group approach, for the BRST symmetries are robust under integrating out degrees of freedom. In addition we discuss potential generalizations of the formalism that allow us to compute out-of-time-order correlation functions that have been the focus of recent attention in the context of chaos and scrambling. We also outline a set of problems ranging from stochastic dynamics, hydrodynamics, dynamics of entanglement in QFTs, and the physics of black holes and cosmology, where we believe this framework could play a crucial role in demystifying various confusions. Our companion paper [1] describes in greater detail the mathematical framework embodying the topological symmetries we uncover here.