In the two parts of the present note we discuss several questions concerning the implementation of overdetermined least-squares collocation methods for higher index differential-algebraic equations (DAEs). Since higher index DAEs lead to ill-posed problems in natural settings, the discrete counterparts are expected to be very sensitive, which attaches particular importance to their implementation. In the present Part 1, we provide a robust selection of basis functions and collocation points to design the discrete problem. We substantiate a procedure for its numerical solution later in Part 2. Additionally, in Part 1, a number of new error estimates are proven that support some of the design decisions.