When animals are difficult to observe while breeding, insights into the mating system may be gained by using molecular techniques. Patterns of extra-pair copulation, multiple paternity and parental genotype analysis may elucidate population characteristics that help improve knowledge of life history while informing management decisions. During the course of a long-term study of leatherback turtles, we assessed the level of multiple paternity in successive clutches for 12 known females nesting at Sandy Point National Wildlife Refuge (St. Croix, U.S. Virgin Islands). We used seven polymorphic microsatellite markers to genotype the females and 1,019 hatchlings representing 38 nests (3-4 clutches from each female). Using deductive genotype reconstruction and GERUD1.0, we identified the 12 mothers and 17 different fathers that were responsible for 38 nests. We found that seven females (58.3%) showed no evidence of multiple paternity in their clutches, while five females (41.7%) had mated with two males each. There was evidence of two fathers (polyandry) in successive clutches for these five females. Multiple fathers didn't contribute to clutches equally. For clutches laid by an individual female, the primary father was responsible for 53.7 to 85.9% of the hatchlings. We demonstrate the feasibility of using male genotype reconstruction to characterize the male component of this breeding population and to assess operational sex ratios for breeding sea turtles.