2017
DOI: 10.1002/asjc.1561
|View full text |Cite
|
Sign up to set email alerts
|

Lebesgue‐p NORM Convergence OF Fractional‐Order PID‐Type Iterative Learning Control for Linear Systems

Abstract: This paper discusses first-and second-order fractional-order PID-type iterative learning control strategies for a class of Caputo-type fractional-order linear time-invariant system. First, the additivity of the fractional-order derivative operators is exploited by the property of Laplace transform of the convolution integral, whilst the absolute convergence of the Mittag-Leffler function on the infinite time interval is induced and some properties of the state transmit function of the fractional-order system a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

2
22
0

Year Published

2018
2018
2021
2021

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 24 publications
(24 citation statements)
references
References 27 publications
2
22
0
Order By: Relevance
“…The basic definitions and concepts of monotone systems are reported in several references, see, e.g., [1,12,[14][15][16]19,20,[26][27][28][29]. This review is an overall collection of such papers.…”
Section: Monotone Systems: Revisitedmentioning
confidence: 99%
“…The basic definitions and concepts of monotone systems are reported in several references, see, e.g., [1,12,[14][15][16]19,20,[26][27][28][29]. This review is an overall collection of such papers.…”
Section: Monotone Systems: Revisitedmentioning
confidence: 99%
“…In 2001, [13] first proposed the D -type ILC and extended the application of ILC to fractional-order systems. For fractional-order linear or nonlinear systems, fruitful achievements on the performance of fractional-order iterative learning control (FOILC) have been made over the last 18 years [14][15][16][17][18][19][20].…”
Section: Introductionmentioning
confidence: 99%
“…Nangrani and Bhat propose a fractional order proportional integral controller (FOPI) based on state feedback for precise and robust control of such undesirable behavior [13]. Lei Li discusses firstand second-order fractional-order PID-type iterative learning control strategies for a class of Caputo-type fractional-order linear time-invariant systems [14]. Gandomi et al use chaotic mapping to improve the firefly algorithm for setting the parameters β and γ in this algorithm [15].…”
Section: Introductionmentioning
confidence: 99%