This work proposes an electronic system which, adapted to a LED lamp, optimizes the use of electrical energy, improves lighting comfort, etc. All this is possible with the programming of an Ultrasonic Distance Sensor (#28015) through an Arduino Nano Rev. 3. This Arduino, connected to actuators, regulates the intensity of the light depending on the distance between the lamp and the work area. In case an object or a human being approaches or moves away from the lamp, the luminous intensity will increase or decrease in relation to the previously established parameters. In order to achieve this objective, the installation of a breadboard of the proposed system is carried out for its subsequent testing and simulation. Several open source software are also used, such as: Arduino, Fritzing, Inkspace, etc. The Arduino is used to program the brain of the operation, that is, the microcontroller in the arduino platform; Fritzing for the digital assembly in breadboard, its schematic and the PCB (Print Circuit Board), all this of the proposed circuit; and Inkspace for the creation of the components that are not available in the Fritzing. This project combines three technologies, which combined, result in a Distance & Light Intensity Smart Lamp.