Human–computer interaction (HCI) with screens through gestures is a pivotal method amidst the digitalization trend. In this work, a gesture recognition method is proposed that combines multi-band spectral features with spatial characteristics of screen-reflected light. Based on the method, a red-green-blue (RGB) three-channel spectral gesture recognition system has been developed, composed of a display screen integrated with narrowband spectral receivers as the hardware setup. During system operation, emitted light from the screen is reflected by gestures and received by the narrowband spectral receivers. These receivers at various locations are tasked with capturing multiple narrowband spectra and converting them into light-intensity series. The availability of multi-narrowband spectral data integrates multidimensional features from frequency and spatial domains, enhancing classification capabilities. Based on the RGB three-channel spectral features, this work formulates an RGB multi-channel convolutional neural network long short-term memory (CNN-LSTM) gesture recognition model. It achieves accuracies of 99.93% in darkness and 99.89% in illuminated conditions. This indicates the system’s capability for stable operation across different lighting conditions and accurate interaction. The intelligent gesture recognition method can be widely applied for interactive purposes on various screens such as computers and mobile phones, facilitating more convenient and precise HCI.