Using Bieberbach groups we study multipermutation involutive solutions to the Yang-Baxter equation. We use a linear representation of the structure group of an involutive solution to study the unique product property in such groups. An algorithm to find subgroups of a Bieberbach group isomorphic to the Promislow subgroup is introduced and then used in the case of structure group of involutive solutions. To extend the results related to retractability to non-involutive solutions, following the ideas of Meng, Ballester-Bolinches and Romero, we develop the theory of right p-nilpotent skew braces. The theory of left p-nilpotent skew braces is also developed and used to give a short proof of a theorem of Smoktunowicz in the context of skew braces.