In humans, gait adapts to prolonged walking on a split-belt treadmill, where one leg steps faster than the other, by gradually restoring the symmetry of interlimb kinematic variables, such as double support periods and step lengths, and by reducing muscle activity (EMG, electromyography). The adaptation is also characterized by reversing the asymmetry of interlimb variables observed during the early split-belt period when returning to tied-belt locomotion, termed an after-effect. To determine if cats adapt to prolonged split-belt locomotion and to assess if spinal locomotor circuits participate in the adaptation, we measured interlimb variables and EMG in intact and spinal-transected cats before, during and after 10 min of split-belt locomotion. In spinal cats, only the hindlimbs performed stepping with the forelimbs stationary. In intact and spinal cats, step lengths and double support periods were, on average, symmetric, during tied-belt locomotion. They became asymmetric during split-belt locomotion and remained asymmetric throughout the split-belt period. Upon returning to tied-belt locomotion, symmetry was immediately restored. In intact cats, the mean EMG amplitude of hindlimb extensors increased during split-belt locomotion and remained increased throughout the split-belt period, whereas in spinal cats, EMG amplitude did not change. Therefore, the results indicate that the locomotor pattern of cats does not adapt to prolonged split-belt locomotion, suggesting an important physiological difference in the control of locomotion between cats and humans. We propose that restoring left-right symmetry is not required to maintain balance during prolonged asymmetric locomotion in the cat, a quadruped, as opposed to human bipedal locomotion.