Background-The sequence of left ventricular (LV) systolic emptying is not completely understood. Using real-time 3-dimensional echocardiography, we investigated this sequence and LV synchronicity in physiological and pathological conditions. Methods and Results-The study population consisted of 116 healthy volunteers, 20 top-level athletes, 35 patients with LV dysfunction, and 84 patients with LV dysfunction and left bundle-branch block (LBBB). We subdivided the LV into 16 volumetric segments for regional analysis and into apical, middle, and basal regions to calculate the mean of end-systolic times and the time to minimum systolic volume of each region. In healthy volunteers and in top-level athletes, the emptying systolic times increased smoothly from apex to base. These differences determined an apex-to-base time gradient in the LV emptying sequence. In patients with LV dysfunction and without LBBB, this gradient was maintained with a relatively higher LV dyssynchrony. However, in patients with LV dysfunction and LBBB, there was no clear sequence in LV emptying volumes, and this group had the highest LV dyssynchrony.
Conclusions-Real-time