Background: Ridge and furrow (RIFU) systems and associated soils are a widespread legacy of medieval agriculture, are archives of historical land use, and might affect recent ecosystems. Open questions about RIFU formation and potential legacy effects still exist, especially related to physical soil properties.Aims: Our aims were (1) to characterize the soil properties of RIFU soils and (2) to compare the drought sensitivity and the growth resistance in extremely dry years of trees growing on ridges and furrows, respectively.
Methods:We studied soil physical (bulk density, saturated soil hydraulic conductivity, and texture) and chemical (soil pH, soil organic matter, and nitrogen content) properties and the climate sensitivity of tree growth on RIFU systems for three study sites in Prignitz, Germany.Results: RIFU systems showed a high spatial heterogeneity of soil stratigraphy due to ridge construction and increased accumulation of soil moisture and organic matter in furrows due to post-abandonment pedogenesis. Slight spatial differences in soil physical properties were found, with increased air capacity in ridge soils and higher available water contents in furrow soils. No differences in drought sensitivity were observed for trees growing on ridges and furrows, except for a wet site, where trees in furrows showed a higher sensitivity. Resistance in dry years tended to be similar or increase from furrows to ridges.
Conclusions:The results reflect a spatial differentiation of stratigraphy and postabandonment pedogenesis on abandoned RIFU systems and suggest an adaption to different moisture conditions through RIFU construction. Differences in drought sensitivity of tree growth with relative land surface could only be detected for one of the three sites, where trees were found to be less drought sensitive on ridges.