The escalating number of pending cases is a growing concern worldwide. Recent advancements in digitization have opened up possibilities for leveraging artificial intelligence (AI) tools in the processing of legal documents. Adopting a structured representation for legal documents, as opposed to a mere bag-of-words flat text representation, can significantly enhance processing capabilities. With the aim of achieving this objective, we put forward a set of diverse attributes for criminal case proceedings. To enhance the effectiveness of automatically extracting these attributes from legal documents within a sequence labeling framework, we propose the utilization of a few-shot learning approach based on Large Language Models (LLMs). Moreover, we demonstrate the efficacy of the extracted attributes in downstream tasks, such as legal judgment prediction and legal statute prediction.