High-voltage transmission technology has advanced quickly with the overall development and increased use of renewable energy. More demands on the insulating system are made when high-voltage power systems evolve. One of the significant factors is the sharp rise in population density, which led to the high demand for electricity. Right-of-way infringement is a problem that frequently occurs these days. Transmission is done over a rated capacity; as a result, the transmission line heats up, the insulation ages, and the electric field becomes distorted. The insulating system is prone to fail too soon when the operating voltage inverses or when there is a significant temperature differential. Environmentally friendly insulating materials have received much attention recently. A synergistic optimisation of heat resistance properties, mechanical properties, and dielectric properties must be accomplished before these materials can be used in high-voltage transmission systems. They must also withstand harsh electrical and thermal shocks such as overvoltage and short-circuit faults. One of the developments that has become a popular research topic is the constantly evolving tower design. This review article presents advancements in cross-arm technology in high-voltage transmission systems to elaborate on the limitations and contributions of different research work.