With conventional treatments for primary immunodeficiency diseases (PIDs), such as allogeneic stem cell transplantation or autologous gene therapy, still facing important challenges, the rapid development of genome editing technologies to more accurately correct the mutations underlying the onset of genetic disorders has provided a new alternative, yet promising platform for the treatment of such diseases. The prospect of a more efficient and specific therapeutic tool has pushed many researchers to apply these editing tools to correct genetic, phenotypic, and functional defects of numerous devastating PIDs with extremely promising results to date. Despite these achievements, lingering concerns about the safety and efficacy of genome editing are currently being addressed in preclinical studies. This review summarizes the progress made toward the development of gene editing technologies to treat PIDs and the optimizations that still need to be implemented to turn genome editing into a next-generation treatment for rare monogenic life-threatening disorders.